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SINCE THE EARLY MIOCENE FROM HOLE 985A, NORWAY BASIN?
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ABSTRACT

Dark, organic-rich sediments were recovered from the lower Miocene section (~16.6 Ma) in Hole 985A in the Norway
Basin during Ocean Drilling Program Leg 162. Organic carbon and total sulfur contents of the dark sediments showed a maxi-
mum concentration of 5.6 and 26.1 wt%, respectively. Sulfur enrichment in the sediments indicates that these dark layers were
formed under anoxic conditions in bottom water. Four dark and eight greenish gray sediment samples, ranging in age from
early Miocene to Pleistocene, were analyzed for lipid-class compounds (aliphatic hydrocarbons, fatty alcohols, and sterols)
using gas chromatography (GC) and GC/mass spectrometry to better understand the formation processes of the organic-rich
dark layers and to reconstruct the paleoenvironmental changes. The molecular distributions of n-alkanes and fatty alcohols
indicate that terrigenous organic matter largely contributed to both types of sediments. Significant amounts of hopanoid hydro-
carbons, such as diploptene and hop-17(21)-ene, however, were detected characteristically in the dark sediments, which sug-
gests that prokaryotes such as methane-oxidizing bacteria or cyanobacteriamay have significantly contributed to the formation
of these organic-rich, dark sediments. These results indicate that the bottom waters of the Norway Basin had been subjected to

anoxic conditions during the early Miocene.

INTRODUCTION

The high-latitudinal oceans are key regions for understanding the
global climate system and its changes throughout geological time.
The deep-water convection in these areas, for example, is a mgjor
driver of the global thermohaline circulation that controls global hest
transport and climate. Recently, lipid-class compounds such as al-
kanes and fatty alcohols have been studied in deep-sea sediments to
better understand pal eoenvironmental changes associated with bio-
logical activities. Because some of these biomarkers are chemically
stable during early diagenesis, they are useful in the reconstruction of
long-term pal eoceanographic and pal eoclimatol ogic changes. For ex-
ample, n-alkanes and fatty alcohols studied in the black shales and/or
adjacent rocks recovered by the Deep Sea Drilling Project (DSDP)
and the Ocean Drilling Program (ODP) have provided some paleoen-
vironmental signatures of climate changes (e.g., Meyerset al., 1984;
Simoneit, 1986; Deroo et al., 1979; Rinnaet al ., 1996; Stein and Stax,
1996). Pristane/phytane (Pr/Ph) ratios of sediments have also been
used to indicate bottom-water redox conditions (e.g., Didyk et al.,
1978).

Here we report organic geochemical studies of dark, organic-rich
sediments collected from ODP Hole 985A to better understand the
formation mechanism of dark/black sediment layersin relation to bi-
ologicd activities. Site 985 is apart of a palecenvironmental transect
from Norway to Greenland, designed to study the history of advec-
tion of temperate saline Atlantic waters into the Norwegian-Green-
land Sea. Dark, organic-rich sediments have rarely been recovered
from previous DSDP and ODP sites in the northern North Atlantic.
Therefore, organic geochemical analyses of these dark layers may
provide information about the origin of the organic matter inthe Nor-
way Basin and about the state of bottom-water conditions since the
early Miocene.
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SAMPLESAND METHODS
Sediment Samplesand Age Controls

We recovered six layers of dark, organic-rich sediments from
Hole 985A (66°56.490'N, 66°27.012'W, 2788 m water depth), which
was drilled on the eastern slope of the Iceland Plateau in the Norway
Basin (Fig. 1). The organic-rich layers were observed in Core 162-
985A-37X (338—347 meters below seafloor [mbsf]). Carbonate con-
tents in these layers were found to be nearly zero (Shipboard Scien-
tific Party, 1996). Shipboard age controls of Hole 985A were based
primarily on magnetic polarity events and biostratigraphy (Shipboard
Scientific Party, 1996). In this paper, we used the shipboard age con-
trols, and the approximate age of the dark sediments ranged from
16.52 to 16.67 Ma (early Miocene). Unfortunately, the paleomag-
netic data were unreliable in the sediments below 155 mbsf; thus, bio-
stratigraphic information from the rare, nonbarren intervals provides
the only shipboard age control for the lowermost portion of this hole
(Shipboard Scientific Party, 1996). Ages of the section older than
14.40 Ma (278.79 mbsf) may be revised in the future to older ages.

Lipid Isolation, Gas Chromatography (GC),
and GC/Mass Spectrometry Analysis

A total of 12 selected samples (Table 1), including four dark, or-
ganic-rich sediments, were studied for the molecular distributions of
lipid-class compounds. The frozen sediment samples were thawed
and the outer rims were removed to avoid potential contamination.
The samples were dried and ground to a fine powder in an agate pes-
tle. Before organic solvent extraction, dry samples (7-8 g for green-
ish gray sediments and 1-2 g for dark sediments) were spiked with
two internal standards (1.43 pgreC q fatty alcohol and 2.47 ug of
iso-C,, fatty acid). Lipids were extracted three times with methanol/
dichloromethane (3:1), dichloromethane/methanol (10:1), and
dichloromethane/methanol (10:1) using an ultrasonic homogenizer.
The extracts were isolated by a centrifuge, washed with 50 mL of
0.15-M HCI to remove salts contained in the sediments, and were
then saponified with 30 mL of 0.5-M KOH/methanol for 2 hr under
a reflux. Neutral components were separated by extraction with
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Figure 1. Location map of Site 985 in the Norway
Basin. Contours are shown in meters below sea level.

Table 1. Samplelist and elemental compositions of sediments from Hole 985A, Norway Basin.

Core, section, Depth Age TOC TN TS CIN
interval (cm) (mbsf) (Ma) Epoch Lithology (Wt%) (Wt%) (wt%)  molar ratio
162-985A-
1H-3, 79-84 3.79 0.14 Pleistocene Clayey nannofossil ooze 0.46 0.06 0.12 9.03
9H-3, 78-82 77.98 2.90 late Pliocene Dark greenish gray silty — — — —
15H-3, 79-84 134.99 5.92 late Miocene Dark greenish gray silty clay — — — —
19X-3, 78-82 168.48 7.68 late Miocene Dark greenish gray clay — — — —
22X-3,79-84 197.19 9.43 late Miocene Dark greenish gray clay 0.28 0.06 0.47 5.24
26X-3, 79-84 235.59 11.77 middle Miocene Dark greenish gray clay — — — —
36X-3, 79-84 331.89 16.16 early Miocene Dark greenish gray clay 0.36 0.06 0.51 7.22
36X-3, 79-84 341.49 16.48 early Miocene Dark greenish gray clay 0.19 0.04 0.00 5.37
37X-4, 24-27 342.44 16.52 early Miocene Dark layer 3.83 0.28 9.98 15.9
37X-5, 82-84 344.53 16.58 early Miocene Dark layer 3.99 0.30 19.9 15.3
37X-6, 16-18 345.37 16.61 early Miocene Dark layer 5.64 0.39 26.1 17.0
37X-7,31-34 347.02 16.67 early Miocene Dark layer 4.38 0.37 18.0 14.0
Note: TOC = total organic carbon, TN = total nitrogen, TS = total sulfur, — = not measured.

dichloromethane/n-hexane (10:1) twice, whereas acidic components rier gas, and the gas chromatograph oven temperature was pro-
were extracted with dichloromethane three times after the remaining grammed from 59(1 min) to 316C (40 min) at 6C/min.

solution was acidified with 7 mL of 6-M HCI to pH < 2. The neutral During the experimental procedures, we checked the recovery of
fraction was further separated into four subfractions in a Pasteur pi- lipids by using both internal and external standards. Internal standard
pette column packed with a silica gel (BIO-SIL A, 200-400 mesh)recovery averaged 83.7% * 12.2%(N = 12) forn-C 4 alcohol.
which was deactivated with 1% water (Kawamura, 1995). AliphaticThe concentrations reported for the lipid compounds contained in the
hydrocarbons (N-1), polynuclear aromatic hydrocarbons (N-2), keN-4 fractions were corrected for the recoveries described above.
tones and aldehydes (N-3), and fatty alcohols and sterols (N-4) wekowever, the concentrations of aliphatic hydrocarbons were not cor-
eluted with n-hexane, n-hexane/dichloromethane (2:1), dichlo- rected for the recovery because the recoveries of this fraction were
romethane, and dichloromethane/methanol (95:5), respectively. Th90% during these procedures (Ohkouchi, 1995). Triplicate analyses
N-4 fraction was treated with bis-trimethyl-silyl-trifluoroacetamide of composite sediments showed that the analytical errors in the exper-
(BSTFA) before gas chromatographic analysis. iments were 6.2% for Cn-alkane and 5.6% for Cfatty alcohol.

GC analyses of the N-1 and N-4 fractions were performed with 8lank experiments performed in parallel with sample analyses
Carlo Erba 5160 gas chromatograph installed with a cold on-columshowed no serious contamination peaks. The blank:sample ratios are
injector, a HP-5 fused silica capillary column (30 m x 0.32 mm interusually <3% for G, n-alkane.
nal diameter; 0.25-um film thickness), and a flame ionization detec-
tor (FID). The FID temperature was maintained at’@Mydrogen M easurements of Total Organic Carbon,
was used as a carrier gas, and the column oven temperature was pro- Total Nitrogen, and Total Sulfur
grammed from 70to 120C at 30C/min and from 120to 320C
(30—40 min) at 8C/min. The GC peaks were processed using a Shi- Wet sediments (~1 g) were dried at 305or 24 hr. The dried
madzu Chromatopac C-R7A integrator. GC/mass spectrometry analamples were ground to a fine powder in an agate pestle. Total or-
yses were performed with a Finnigan Mass Lab MD-1000 system irganic carbon (TOC), total nitrogen (TN), and total sulfur (TS) were
stalled with a DB-5 fused silica capillary column (60 m x 0.25 mmmeasured with a Carlo Erba CNS elemental analyzer (NA1500). The
internal diameter; 0.25-pum film thickness). Helium was used as a caanalytical error is <0.01% for each element.
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RESULTSAND DISCUSSION most samples showed an odd carbon-number predominance with a
maximum at G, or C,, (Fig. 4). The carbon preference indexes (CPI:
ratio of the amounts of odd-carboralkanes to those of even-carbon
n-alkanes) for G-C,, n-alkanes vary from 2.84 to 5.77 in the green-
ish gray sediments and from 2.37 to 2.88 in the dark sediments, re-
spectively (Fig. 5; Table 2). Mean carbon numbers (MC#: the con-

: centration-weighted, mean carbon-chain length; Peltzer and Gago-
with an averaged value of 0.35 wt% for the whole sequence. How- sian, 1989) for C-C,. n-alkanes vary from 28.6 to 30.0 in the

ever, the averaged TOC content (0.71 wt%) in the middle interval . > . .
(177276 mbasgf' middle Mioceng—late Mi(gcene) is considerably highgreenlsh gray sediments and from 30.1 to 30.5 in the dark sediments,
) respectively (Fig. 5; Table 2).

0 ) : y
er than that (0.28 wt%) of the other intervals (Shipboard Scientific Concentrations of pristane and phytane in the 12 samples ranged

Party, 1996). A similar TOC enrichment was observed between 1 ;
and 15 Ma in Holes 642B and 643A, which were drilled on theﬁom 3.841044.6 n_g/g dry §ed|ments and from 1.97 tc_) 29.7 ng/g dry
sediments, respectively. Pristane/phytane (Pr/Ph) ratios ranged from

Vgring Plateau (H6lemann and Henrich, 1994). Total nitrogen con; L - X
; - . 1.0 to 2.6 (Fig. 5; Table 2). The Pr/Ph ratios of three dark sediments
| 0, -
tents are generally low in Hole 985A (0.03-0.15 wt%; Fig. 2); how: amples 162-985A-37X-5, 82—84 cm: 37X-6, 16-18 cm:; and 37X-

ever, TN peaks are_sh_own atthe c_Jrganic carbon-rich Iayeros. To_tal N , 31-34 cm) are nearly unity, suggesting that these dark sediments

furlvnallﬁgsdsz%?gimgiz éLeggam?nz&aX; r?%ecoéghfgnﬁfa(r??ﬁ 2)may have been deposited under anoxic conditions in bottom water.

a range between 3.83 and 5.64 wt%, ~10 times larger than those -* 30

the greenish gray sediments (Fig. 2; Table 1). TN and TS are a

higher in these sediments, with concentration ranges from 0.28

0.39 wt% and 9.98 to 26.1 wt%, respectively (Fig. 2; Table 1). The:

values are extremely high compared with those of the other sequer 25

In particular, TS in the dark layers is ~50 times more concentrat

than in the greenish gray sediments. The chemical form of the sul

is probably pyritic sulfur because of the occurrence of significar

amounts of pyrite in these layers (Shipboard Scientific Party, 1996 20
A TOC vs. TS diagram (Fig. 3) provides information about th

depositional environment. Sulfur is abundantly present as sulfate

seawater; thus, the limiting factor for pyrite formation under oxic se:

water conditions is the amount of organic matter. In such an envirc

ment, there is a positive correlation between sulfur and organic ci

bon contents (e.g., Berner, 1984). Under anoxic seawater conditio

H_S exists in the seawater. Thus, framboidal pyrite is initially forme 10

in the water column, resulting in a surplus of sulfur in the organic ca

bon vs. sulfur diagram (Leventhal, 1983). Figure 3 shows an extrer

enrichment of sulfur in the dark sediments. This suggests that t 5

depositional environments were very anoxic, probably resulting froi

an increased productivity of the ocean and/or restricted deep-wa -7

ventilation in the Norway Basin region during the early Miocene.

Bulk Compositions

Figure 2 showsthe shipboard and shore-based results of elemental
analysis of sediments from Hole 985A. Except for several organic-
rich layers, total organic carbon ranged from 0 to 2.30 wt% (N = 140)

anoxic .
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Homologous series of G-C,, n-alkanes were detected in the sed- Figure 3. TOC vs. TS diagram from Hole 985A. Open circlesindicate green-
iments (Fig. 4), as well as pristane and phytane. Total concentratic ish gray clay; solid circlesindicate dark sediments. The dashed line shows a
of the n-alkanes ranged between 342 and 3360 ng/g dry sedimei C/S ratio of 2.8, which is an average for normal marine detrital sediments
(Table 2). Molecular distributions of long-chaip.GC.. n-alkanes in  from the Quaternary (Berner, 1984).
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Table 2. Analytical results of hydrocarbonsin sedimentsfrom Hole 985A.
X i Total Ciro0 Cos a5
Core, section, Depth Age Pristane Phytane n-alkanes n-akanes n-alkanes CPI MC#
interval (cm) (mbsf) (Ma) (ng/gds)  (ng/gds) Pr/Ph (ng/gds) (ng/gds) (nglgds) (C-C,) (Cx—Cy)
162-985A-
1H-3, 79-84 3.79 0.14 42.6 27.1 1.58 1260 122 852 2.84 28.9
9H-3, 78-82 77.98 2.90 13.7 6.76 2.03 2230 99.4 1720 4.52 28.6
15H-3, 79-84 134.99 5.92 35.0 13.4 2.61 3360 207 2490 3.70 28.6
19X-3, 78-82 168.48 7.68 12.8 8.04 1.59 750 52.3 601 4.30 29.4
22X-3,79-84 197.19 9.43 10.8 7.28 1.48 928 50.9 765 4.45 29.0
26X-3, 79-84 235.59 11.77 42.7 242 1.77 2310 161 1940 3.71 29.8
36X-3, 79-84 331.89 16.16 10.8 6.72 1.60 680 48.5 549 3.06 30.0
37X-3, 79-84 341.49 16.48 3.84 1.97 1.96 342 16.0 289 5.77 29.8
37X-4, 24-27 342.44 16.52 44.6 29.7 1.50 3300 261 2660 2.37 30.5
37X-5, 82-84 344.53 16.58 11.7 11.1 1.05 1850 128 1490 2.88 30.1
37X-6, 16-18 345.37 16.61 18.9 17.4 1.09 2110 196 1520 2.47 30.1
37X-7,31-34 347.02 16.67 8.30 8.36 0.99 2590 97.1 2280 2.54 30.1

Notes: ds = dry sediments, Pr/Ph = pristane/phytane ratio. CPl = carbon preference index (the ratio of the amounts of odd-carbon n-alkanes to those of even-carbon n-alkanes [Peltzer
and Gagosian, 1989]). MC# = mean carbon number (the concentration-weighted, mean carbon-chain length [Peltzer and Gagosian, 1989]).

Total C17-Cyo n-alkanes Total C25-Css n-alkanes CPI of n-alkanes MC# of n-alkanes
(ng/g dry sediments) (ng/g dry sediments) (Cy5-Csy) Pr/Ph (C5-Csa)
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Figure 5. Concentrations of total C,,~C,, n-alkanes and total £-C,. n-alkanes in sediments from Hole 985A vs. age, together with CBlsg,), Pr/Ph
ratios, and MC#s (see text for abbreviations). Symbols as in Figure 2.
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Pr/Ph ratios of oils or bitumens have been used to indicate the redox ranged from 16.3 to 534 ng/g dry sediments (Table 3). These concen-
potential of the source sediments (Didyk et al., 1978). Pr/Ph <1 indi- trations are distinctly lower than fatty alcohols.

cates anoxic deposition, particularly when accompanied by high por- The n-alkane distributions in dark sediments and greenish gray
phyrin and sulfur contents. Oxic conditions are indicated by Pr/Ph samples are dominated by long-chain homologs derived from epicu-
>1. ticular waxes of terrestrial higher plants (Eglinton and Hamilton,
We also detected fatty alcohols and sterols in the greenish gray 1967). MC#s oh-alkanes and fatty alcohols show relatively higher
and dark sediments. Homologous series of saturated C ,—C, fatty al-  values in the lowermost section (early Miocene) and a decrease to-

cohols were detected in the sediments, as well as cholesterol (cholestrd the upper section (Figs. 5, 6). Rinna et al. (1996) reported a sim-
5-en-3R-0l), B-sitosterol (24-ethyl-cholest-5-en-33-ol), and dinosteiitar result for Hole 909C, Fram Strait, which is the boundary region
ol (4,23,24-trimethyl-B[H]-cholest-22-en-33-0l). Total concentra- between the Arctic Ocean and the North Atlantic. They interpreted
tions of C,—C,, fatty alcohols varied between 280 and 6770 ng/g drthe higher MC#s in the sediments to indicate a warmer climate (or
sediments (Table 3). Fatty alcohols show a strong even carbosupply of organic matter from a continental area with a warmer cli-
number predominance with a peak af @ C,,. Relatively short-  mate) in the Miocene. We found that MC#s of planttealkanes are
chain, G,-C,, alcohols are thought to be mainly derived from marinehigher (31.4-31.5) in an equatorial regiofiN}than those (28.9-
organisms and bacteria, whereas the-C,;, alcohols are mainly de- 29.6) in mid latitudes (ZZ#43FN) (Kawamura et al., 1998). There-
rived from vascular plants (e.g., Eglinton and Hamilton, 1967; Tulfore, these results from Hole 985A may suggest that the climate con-
loch, 1976; Simoneit, 1977; Brassell et al., 1980). As shown in Figurditions in the northern North Atlantic were warmer than in the
6, concentrations of -C,; fatty alcohols in the dark sediments are Pliocene and/or that low- to high-latitudinal atmospheric transport of
higher than those of the near and overlying greenish gray sedimentsyrestrial materials was enhanced during the early Miocene.

which suggests a greater contribution of terrestrial higher plants to The CPI values are known to be 5-10 for terrestrial higher plant
the sediments. CPlIs for,&C,, fatty alcohols show no typical trend waxes and unity for petroleum hydrocarbons and combustion resi-
with age. MC#s for C—C,, fatty alcohols vary from 26.5 to 28.6 in dues of fossil fuels (Simoneit and Mazurek, 1982). Thus, the CPl in-
the entire sequence (Fig. 6; Table 3). Concentrations of total steradkex indicates that the lipid compounds of greenish gray sediments in

Table 3. Analytical results of n-fatty alcohols and sterolsin sedimentsfrom Hole 985A.

n- Fatty alcohols Sterols
Core, section, Depth Age C;—Cy CiCy CPI MC# Total
interval (cm) (mbsf) (Ma) (ng/gds) (ng/gds) (Cy-Cy) (Cx—Cy) (ng/g ds)
162-985A-
1H-3, 79-84 3.79 0.14 49.8 489 4.57 27.0 57.2
9H-3, 78-82 77.98 2.90 296 4040 481 26.6 202
15H-3, 79-84 134.99 5.92 217 4070 4.43 26.5 284
19X-3, 78-82 168.48 7.68 82.0 1150 6.42 26.8 55.0
22X-3, 79-84 197.19 9.43 71.4 1940 5.66 26.9 110
26X-3, 79-84 235.59 11.77 193 6770 5.06 27.2 361
36X-3, 79-84 331.89 16.16 32.6 488 7.23 28.1 32.9
37X-3, 79-84 341.49 16.48 26.4 280 5.76 28.1 16.3
37X-4, 24-27 342.44 16.52 363 2060 4.32 28.5 238
37X-5, 82-84 344.53 16.58 365 1440 7.30 28.6 534
37X-6, 16-18 345.37 16.61 773 1260 4.90 28.4 464
37X-7,31-34 347.02 16.67 436 2210 5.56 28.6 359

Notes: ds = dry sediments. CPI = carbon preference index (the ratio of the amounts of even-carbon n-alcohols to those of odd-carbon n-alcohols [Peltzer and Gagosian, 1989]). MC# =
mean carbon number (the concentration-weighted, mean carbon-chain length [Peltzer and Gagosian, 1989]). Sterols = cholesterol + R-cholestanol + stigmasterol + R-sitosterol +
dinosterol.

C14-Cyp fatty alcohols Ca4-Cag fatty alcohols CPI of fatty alcohols MCH# of fatty alcohols Total sterols
(ng/g dry sediments) (ng/g dry sediments) (C23-C30) (C23-Ca0) (ng/g dry sediments)
0 500 1000 O 4000 8000 0 2 4 6 8 26 27 28 29 0 500 1000
Omgr—Tr—TT T oT T T T T T T T T TATTT TTTTOTTT T TTITT T T T T T T T
- =] - - o - - A 4 F O - L < -
5 b - = - = 4 . = -
- O - o o - o A - - 0O - - < -
K] ] Lo d L A ] | o {4 P i
) L < L < L 4 F - L 4
= o o A a L4
S 10F 4 F 4 F 4 F 4 F E
2’ 5 - 5 - 5 - - - 5 -
L 0O 4 L o L A 4 L o 4 X L4 A
15 - 4 F 4 F 4 F 4 F -
5 mm n | Pes 11 e 2] [ Bam] 7 voee ]
ol o144 PRI T B R PEEN TR T ETRE NERTRE RETE T A B

Figure 6. Concentrations of total C,,~C,, and G,~C, fatty alcohols, CPIs of £-C,, fatty alcohols, MC#s of £-C, fatty alcohols, and concentrations of total
sterols in the sediments from Hole 985A. Symbols as in Figure 2.
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Hole 985A contain a large contribution from terrestrial higher plant are minor species in the greenish clay adjacent to the dark sediments.

waxes (e.g., Eglinton and Hamilton, 1967; Simoneit, 1978). These hopanoids are generally synthesized by prokaryotes such as
bacteria and cyanobacteria, with an exception of a few terrestrial eu-
Hopanoid Hydrocarbons karyotes like ferns or lichens (e.g., Ourisson et al., 1979, 1987; Roh-
mer et al., 1984). However, hopanoids in some terrestrial eukaryotes
Various hopanoid hydrocarbons were detected in the dark sedi- do not synthesize carbon skeletons,>Bacteria appear to be the
ments by mass chromatography at m/z 191 (Fig. 7A). Their abun- major source for the sedimentary hopanoids, such as diploptene or

dancesare similar to those of higher molecular weight n-alkanes such diplopterol (Rohmer et al., 1984). Therefore, prokaryotes, including
as n-C,,. Oleane-12-ene (C,;), hop-17(21)-ene (C,,), and diploptene methane-oxidizing bacteria and cyanobacteria, are responsible for
(17R[H], 21R[H]-hop-22[29]-ene) are dominant hopanoid hydrocarthe abundant presence of hopanoids in the dark sediments. These
bons in these samples. Concentrations of oleane-12-ene andnsiderations led us to conclude that the bacterial activity was en-
diploptene varied in the studied section, with a range of 10.0-897 nganced at the time of the formation of organic-rich sediments of the
g dry sediments and 0.95-402 ng/g dry sediments, respectively (Figarly Miocene.
8; Table 4). Although the hopanoid hydrocarbons were detected in Hopanes have been reported abundantly in petroleum and some
the organic-lean greenish gray sediments, they are ~10 times masediments: the hopanoid precursors are important cellular membrane
concentrated in the dark sediments than in greenish clay. In contrasgnstituents of prokaryotes (e.g., Peters and Moldowan, 1993). These
concentrations of hop-17(21)-ene are high in the dark sediments ahdpanes may have originated from prokaryotes, including cyanobac-
range from 550 to 773 ng/g dry sediments (Fig. 8; Table 4). Theiteria in the water column and methanotrophic bacteria in bottom sed-
concentrations in the greenish clay, however, were below detectidments. Simoneit (1977) reported that the major hopanoid hydrocar-
limits. bons detected in the Black Sea are trinorhopane, diploptene, and
The dark sediments are characterized by high concentrations @¥R(H)-moret-22(29)-ene. Venkatesan (1988) also reported the pres-
hopanoid hydrocarbons and terrestrial biomarkers. In contrast, thence of diploptene and hop-17(21)-ene in sediment cores from Brans-
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Figure 7. Partial ion chromatogram at (A) m/z 191 (hopanoid hydrocarbons), (B) m/z 71 (n-akanes), and (C) total ion current of the aliphatic hydrocarbons sep-

arated from the dark sediments (Sample 162-985A-37X-6, 16-18 cm). Peaks: (a) olean-12-ene; (b) hop-17(21)pm8;H{op&he; (d) diploptene; (e),C
aR-hopane; (f) G RR-hopane; (g) £ RR-hopane; and (h),CRR-hopane.
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(ng/g?i?;-slezd-ﬁrr\fms) o gr}gp&};gzejl&)i:gﬁts) (ng/gddi?;osp;z?;ems) posited in the early Miocene. .T.hils study ilndicates that
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0 orTTTT T T T T T teria, may have significantly contributed to the formation of
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